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Abstract

In this paper, the performance of a group of autonomous
vehiclestracking a prescribed goal isanalyzed. The vehiclesare
considered to be ground-based unmanned robots acting as a
group to maintain an unbroken communication network in a
building or some other region. Vehicle interactions are modeled
as achain of interconnected systems. The stability of the entire
collective as well asindividua vehiclesis studied using large-
scale systems theory. Stability can be controlled viatwo key
parameters: vehicle speed constant (maximum vehicle speed
times sample time) and vehicle interaction gain. In addition to
the stability analysis, simulation of agroup of vehiclesina
building with walls, doors, and other obstaclesis studied with
respect to maintaining a communication network among the
vehicles at all times.

1. Introduction

As part of aproject for DARPA’s ITO Software for Distributed
Robotics Program, Sandia National Laboratoriesis developing
andysis and control software for coordinating hundreds to
thousands of autonomous cooperative robotic agents performing
military operations such as reconnai ssance, surveillance and
target acquisition; countermine and expl osive ordnance disposd;
force protection and physical security; and logistics support.
Dueto the nature of these applications, the control techniques
must be distributed, and they must not rely on high bandwidth
communi cation between agents. The goal of thiswork isto
coordinate the behavior of alarge number (10s to 100s to 1000s)
of autonomous robotic agents performing various maneuvers.
The agorithms to control these agents must be safe (provably
stable and convergent), covert (low communication bandwidth),
and fault tolerant (decentralized).

We have focused our effort on the task of surveillance wherein
large numbers of vehicles from 20 to 1000 are dispersed around
afacility. Thegoal isfor these vehiclesto autonomously create
adistributed communi cation/navigation network that links a
remote base station to multiple surveillance points. We have
simulated in great detail the control of low numbers of vehicles
(up to 20) navigating throughout a building. These simulations
include detailed models of the radio frequency communication,
infrared and ultrasound ranging with the environment and
amongst vehicles, and the vehicle kinematics.

Techniques of large-scale systems theory are employed in
andyzing the stability of these vehicles such as are described in
[1]. More advanced techniquesthat use adaptive control [4] or
variable structure control [5] are also being considered. The
following sections describe the details on the stability analysis
and the simul ation results.

2. Stability Analysisfor One-Dimensional Case

The subject of cooperative multiple autonomous vehicles has
generated agreat deal of interest in recent years dueto the vision
of these vehicles being able to perform tasks faster and more
efficiently than an individua vehicle. Such tasks caninclude
operationsin hazardous or remote environments with the robot
performing repetitive, dangerous, or information gathering
duties. Recent work has taken many different approaches. The
strategies employed are based on diverse fields such as artificia
intelligence, game theory, biology, distributed control, and
genetic algorithm's. Because we areinterested in proving
convergence and stahility of algorithms, we have been
investigating using large-scale system control theory, as for
examplegivenin [1].

In complex large-scale systems, it is often desirable to break up
a systeminto smaler strongly coupled systemsthat are
controllable. If we can prove that the smdler systems are
input/output reachable and controllable, then we can prove that
the large-scal e system is connectively controllable. Even the
smaller scale systems may contain thousands of states, in which
case, there exist techniques that can quickly determine whether
the system isinput/output reachable and structurally
controllable. The analysis below shows some of the progress
made in understanding how these techniques can be used in the
design of large-scal e distributed cooperative robotic vehicular
systems.

We gtart by analyzing a smple one-dimensional problemin
which alinear chain of interdependent vehiclesisto spread out
along aline asshown in Figure 1. The objective isto spread out
evenly along the line using only information from the nearest
neighbor. We had previously devel oped arobotic perimeter
detection system that spread the vehicles around a perimeter
using one-half the distance between the neighboring two
vehicles asthe goal point for each vehicle[3]. We were
interested in finding out if one-half was amagic number and if
we could prove that it provides a stable solution.

Assume that the vehicle's plant model is a simple integrator, and
the commanded input is the desired velocity of the vehicle aong
theline. A feedback loop and a proportional gain K, are used to
control the vehicl€ s position. The desired position of each
vehicleis one-haf the sum of the position of the neighbors on
each sde. Figure 2 shows ablock diagram of the control
system. The formulation isin the discrete-time frequency
domain, i.e. the zdomain. Since we areinterested in steady
state analysis, we will make heavy use of the final value
theorem, which states
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Figure 1. One-dimensional control problem. Thetop lineisthe

initial state. The second lineisthe desired final state. The
vehicles can only usetheir neighbors’ position to reach thefinal
goal date.
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Figure 2. Control block diagram of two-vehicleinteraction
problem.

If we let Hy(z) be the transfer function Y 1(2)/U(2) and Hx(2) be
the transfer function Y 5(z)/U,(2) then we have
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where we have used the fact that U(z) = 1/(1-27), i.e, uy(kT)=1
for al k. Thatis, the desired linear positioning behavior has
been normalized to be between 0 and 1. The superscript “ss’
refersto the steady state value. Carrying out the block diagram
manipul ation and algebra, one arrives at the formulas for the
steady state position values of the two vehiclesin terms of the
given parameters
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where A1 and Ao aretheinteraction gains (which are 0.5in

Figure 2). It should be noted that both steady state positions are
independent of the delays n; and n,, the proportiona gain K,
and the sampling timedelay T. Likewise, the formulasfor the
interaction gains, given the steady state positions, are
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These formulas assume a stable configuration. We will analyze
stability shortly. Now consider the three-vehicle case. Using
the same andysis as above, we can arrive & the steady state
positions (assuming stability) for the three vehicles as
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where again only the vehicle interaction gains affect the steady
stete position values. To solve theinverse problem, i.e, the
vehicleinteraction gains given the steady state positions, we
must solve an under-determined system of nonlinear equations
with 3 equations and 4 unknowns. This can be doneusing a
nonlinear root finding agorithm such as employed in the
MATLAB (trademark of The MathWorks, Inc.) routine, fsolve.
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Figure 3. N-vehicle interaction problem.

To generdize the above for the N vehicle interaction problem
(shown in Figure 3), we formulate a set of linear equations based
on the algebra of the transfer function manipulation. Note that

yr =1+ A,Y5
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yx = N-1,N Vi
wherei isaninteger suchthat 1 [(1[2, N —1].

Thisresultsin the system of linear equations
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which can be reformulated in the familiar Ax=b form
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Thus, given the steady state position values, the required
interaction gains can be solved for from a system of linear
equations. The solution will not be unique, hence many
different sets of interaction gains can result in the same steady
state position values of the vehicles. Likewise, theinverse
problem can be solved to determine the interaction gains given a
set of desired steady state vehicle position values. We obtain
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In this case, Ax=b is an under-determined system (more
unknowns than equations, 2(N-1)>N for N>2) which can be
solved using QR factorization such aswiththe MATLAB
backslash (\) operator. Alternatively, this can be solved asa
constrained linear minimum norm problem:

min JAx-b st x20, Ax=b, esxsl-e

where thefirst constraint rejects negative interaction gains, the
second constraint forces (3) to be solved exactly, and the third
constraint rejects zero and unity interaction gains, that is, e is a
small parameter greater than zero. The advantage of
formulating (3) as a constrained least squares problem isthat we
can eliminate nonzero interaction gains from the set of possible
solutions. Since zero interaction gains correspond to a vehicle
not utilizing information of its nearest neighbors, it is best to
look at nonzero interaction gains.

We now turn to the problem of andyzing stability of the N
vehicleinteraction problem. For this, areformulation of the
vehicle dynamics into discrete-time state spaceis helpful. The
purpose of this analysisisto determine conditions for
asymptatic stability of vehicle positions with respect to the
interaction gains % and vehicle speed time constant KT where T
isthe sample period. The following time-domain equations are
derived from Fig. 4
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whereit is assumed that uy(k)=0 and the delay between position admissible A values taper off parabolicaly (the sloped “roof”)
interaction information is one sampling delay. To solve these until KT =2. Computer simulations of (4) agreed with these
equations, initialize by setting y;(0)=y;(1)=0 for i between 1 and stability results.

N (note that initial vehicle positions do not have to start at 0, but
thisisthe norma case). Then start the difference equation
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solver at k=1 (i.e. compute y;(2)). For the stability analysis, we

note that we can put (4) into a state space description. We break 18
the analysisinto two cases.

Casel: If @l the interaction delays =0, i.e. nj=0 then we get the
following state space description: 1.4

Oy [
[k [ w1

Byi(l;ﬂ) Er 0.8

)
%wwﬁ 04

L_j— pT KpThot 0
bTh2 1-KpT KpThge

KpTAi -1j K pT KpTAi +1

[

E KpTAN-2N-1  1KpT  KpTANN-1
0 KpTin-IN - 1KpT

08 B 04 DF 0 02 04 OE 04
Inbaracien gain

mMmoOO
a

Figure 4. Sability region for the N=2 vehicle case.
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which isinthe form: y(k+1) = Ay(k) + Buy(k). The eigenvalues
can easily be solved for in any of a number of software packages
including MATLAB. For stability, welook at the maximum
absolute value of all the eigenvalues of A, whichisareal NxN o
matrix. If thisisingde the unit circle (lessthan unity

magnitude) then we have asymptotic stability of the vehicle e
positions. Otherwise, we do not have a stable vehicle o4
configuration. Note that the A matrix above isin tridiagonal
form. For the special case of all theinteraction gains ; = X, the s
elements of each diagonal are equal. Thereisaspecial formula I
(p. 59 of [2]) for the eigenvalues of A inthis case whichis e e e B B

Figure 5. Sability region for the N=10000 vehicle case.

I1=1---,N Casell: If dl theinteraction delays =1, i.e. n;=1, then we get a
more complex state space description:
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combinations of interaction gain % and KT (proportiona control . I .
gain multiplied by the sampling period). The white zone EYN 0 E E E

represents unstable combinations of % and K,T. Werefer to this

as astability “house” due to the shape of the stable zone. The O ylfk) O X p' U
size of this house varies only with N. The plot shown is for O 'k 0 0o O
N=2. As N isincreased, the house gets smaller in width but N yi( oo o
maintai ns the same height and shape. Figure 5 showsthe 0 ‘ 0O Elul(k)
stability region for N=10000. From the formulain (5), we can DyNk( 1) 00" >
see that as N —oo the cosine term becomes unity. This implies Dyl( o OO0 0O
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order to maintain stability. For K,T greater than one, the




The above still fits the y(k+1)=Ay(k)+Bu,(k) formulation. Note
now that A isa2Nx2N matrix. It isalso no longer atridiagonal
matrix. Thereisno smpleformulafor the eigenvaluesof A in
this case even if dl %; = &. The eigenvalues can still be solved
for using standard linear al gebra software, but this becomes
numerically unreliable for large N. However, if a software
package has techniques for handling | arge sparse matrices (as
does MATLAB) then it becomes more tractable. In the above
description, only 4N-2 elements of A are nonzero in general out
of 4N® total dements. Thusfor large N, the A matrix is sparse.
Though aformulais lacking, computer simulation of (4) and
solving for the maximum absol ute eigenval ue of A above
resulted in exactly the same stability regions with respect to A
and KT . In other words, the delay in interaction gains between
vehicles did not affect the stability of the vehicle positionsto
any appreciable degree.

A more specific case can be studied in which al forward k' s
are equal (i.e. by, = A3 = ...= A ) and dl backward %’ sare
equal (i.e. Ap; = k3 = ...= Ag ). Inthiscasethe stahility region
has athree-dimensiona structure, K,T vs. A vs. . Numerical
simulation of this case revealed that for various fixed K,T
contours from 1 to 2, the stability region for Ar and Ag |ooked
like a 1/ A surface that increased in size as K, T decreased from 2
downto 1. Thisisintuitive because we expect therange of 1’s
for stability to shrink asthe speed gainisincreased. Thisis
essentialy athree dimensiond version of the “roof” of the
stability housein Figs. 5 and 6.

Several conclusions can be drawn from the stability analysis.
First, asymptotic stability of vehicle positions depends on
vehicle responsiveness K, communication sampling period T,
and vehicle interaction gain L. If the vehicle is too fast (large
Kp) or the sample period is too long (large T) then the vehicles
will go unstable. Thereis a dependence on interaction gain for
stability as well. Second, the interaction gains can be used to
bunch the vehicles closer together or spread them out. Third,
the stahility region shrinks as the number of vehicles, N,
increases but only to adefined limit. Finaly, we can give atwo
step process for placing the vehiclesinto an arbitrary position.
First, solve Eq. (3) for the i’ s necessary to achieve these
vehicle positions. Then, use the above gtability analysis (the
stability “house”) to determine the upper limits for K, T to
maintain stability.

3. Smulation Example

The multiple-vehicle problemin planar spaceis essentially a
generdization of the above analysis. But when obstacles such
aswallsand other vehicles as well asthe need for

communi cation between vehicles are taken into account, the
ability to andytically solve the problem becomes very difficult.
Thus, we implemented a study of multiple vehicles under such
constraints in asimulation environment devel oped a Sandia
Nationa Laboratories called Umbra [6]. Umbra enablesthe
simulation of multiple autonomous agents with a variety of
physical phenomena such as RF communications, interactions
with solid objects (i.e. callisons), ultrasound communication, IR
detection of objects, vehicle physics, terrain descriptions, and
other phenomenathe user wishesto study. All of these physical
attributes can be smulated simultaneously with a graphical
visualization that allows the monitoring of the vehicles
performance over theterrain.

Such a simulation was implemented for the case of multiple,
small, wheeled vehicles traversing asingle floor in abuilding
with multiple corridors, rooms, and entrances. The vehicles are
modeled after the vehiclesthat will be used in the hardware
tests. Each vehicle contains 4 IR sensors for detecting objects
between 0.15m and 0.46m on al 4 sides of itself (see Figure 6).
The vehicles aso contain RF communication devicesto be able
to converse with other vehicles within a 30m line of sight range
or roughly 10m through walls. They also have ultrasound
capability to measure the distance between them provided they
are within 10m of each other andin line of sight range. The
vehicle physics are quite smple and proved adequate on a
smooth surface. The building model was generated as a CAD
model and contains several connected hallways aswell asa
multitude of variable size rooms. The control algorithms for the
vehicles must avoid contact with walls and other vehicles.
Beyond that, the control goals can vary depending on the
motives of the operator. For instance, the vehicles can spread
out to provide maximum coverage of the building or they can
stay within a prescribed area, or they can maintain a particular
formation. Note that a strict mathematical model of this
situation isintractable. Thisis due to both discrete event-based
as well as dynamic physics with very complicated interactions.
Thus, the smulation shows stability in a qualitative fashion
rather than strictly mathematical. However, future work will
focus on demonstrating that these control agorithms are robust
to modeling uncertainty.

Therestriction that vehicles can’t run into walls, doors, or each
other essential ensures they remain insdethe building. Thisis
accomplished viarulesthat usethe IR sensorsto follow walls
down ahallway. Thiswill enable the vehiclesto move
throughout the building, though not necessarily in any
prescribed fashion. Further restrictions on the vehiclesinvolve
the maintenance of a continuous RF communi cation network.
This requiresthat vehicles stay within 30m of each other or less
if line of sight (LOS) islost (i.e. they may have to stay at awall
junction to maintain LOS). A more stringent condition isthe
ability for each vehicleto know its absolute (x,y) position with
respect to some globa coordinate system. Thisrequires
triangulation from two known vehicles using ultrasound as a
distance measurement. Thisimpliesthat at |east two vehicles
must remain in fixed known locations until the other vehicles
can triangulate off of them. There are a number of techniquesto
accomplish thisthat were invedtigated in Umbra. Theseinclude
the law of cosinestriangulation, steepest descent triangulation,
and conjugate gradient triangulation. All had advantages and
disadvantages depending on the number of vehicles and the on-
board processing power and memory. Finaly, thereisthe
constraint that the vehicles spread out and “ cover” the building
uniformly. A gradient-based scheme was used to repel the
vehicles from each other to diffuse through the building while
the aforementioned constraints keep them close enough to
communication and compute absolute position. Therearea
variety of strategies for keeping the vehiclesin contact with each
other, both RF and ultrasound, to keep the communication loop
intact. But the gradient-based scheme worked well because it
minimized the number of vehicles needed to maintain the RF
loop while still spreading the vehicles throughout the building.

It should be noted that the primary classes of vehicle maneuvers
fall into 4 categories: 1) dispersion (diffusing throughout a
space), 2) clustering (coming together to surround atarget), 3)



following (fairly linear progression through a space), and 4)
orbiting (circular motion around atarget). One technique we are
investigating for coordination of these 4 maneuver typesis
sliding mode control. The diding mode controller will switch
between each category of vehicle maneuvers according to what
is best to achieve overd| stability and satisfaction of the target
goals. Some preliminary work we have donein this area
appearsin [3].
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Figure 6. Detailed simulation of multiple vehicles navigating a
building. The protruding green and blue cones represent the 4
IR proximity sensors.

Finaly, some additiona simulationin MATLAB shows a group
of vehicles dispersing in an enclosed region. Figure 7 illustrates
agroup of 20 vehiclesthat gartsin atightly clustered position.
They are tasked with the goal of spreading out uniformly ina
room with walls determined by the boundaries of the graph. The
resultsin Figure 7 show that the vehicles have spread out
through the room fairly uniformly using a gradient-based
scheme.

4. Conclusions

Work presented in this paper studiesthe stability problem of a
multitude of autonomous robotic vehicles cooperating towards a
prescribed goal. The analysis utilizes large-scal e system theory
and the control strategy is primarily decentralized to reduce
communication overhead while maintaining a considerable
amount of control authority at the vehiclelevel. This providesa
degree of robustness should some of the vehiclesfail. The
andysis focuses on thelinear case of vehicle motion and shows
the stability regions. The simulation |ooks at a more complex
situation with obstacles, RF communication, ultrasound position
triangulation, and IR for obstacle avoidance. Hardware
demonstrations of these vehicles and control strategiesarein
progress. We have built 20 low-cost robotic vehicle platforms,
which contain the necessary processing and sensing to navigate
and traverse abuilding. Currently, we are implementing many
of the algorithms described above on these 20 vehicles. The
goal of the simulation and the hardware tasks is to demonstrate
that a cooperative group of robotic vehicles can forma

communi cati on/navigation network, and that this network could
be applied to a surveillance task.

* = irilial astimata

Figure 7. Plot of 20 vehicles' trajectories started froma
clustered position with the goal of spreading out uniformly
through the space (* indicateinitial position and + indicate
final position).
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